Bilayer hybrid nanoimprinting method for fabricating embedded silver nanostructure arrays with enhanced photoluminescence
نویسندگان
چکیده
A bilayer hybrid nanoimprinting (NI) method was developed for fabricating embedded metal nanopatterns with greater processability and improved reliability for enhanced photoluminescence (PL) in optoelectronic devices. Bilayer hybrid NI consists of the following: (a) spin-coating ultraviolet (UV) and thermally curable NI resists in sequence, (b) high-pressure thermal NI and UV exposure while maintaining the stamp in a pressed position, and (c) silver (Ag) deposition and lift-off using a thermal NI resist on the upper surface to create embedded Ag nanoarrays. Reference samples with no Ag nanopatterns and with protruding Ag dot-shaped nanopatterns were also fabricated for comparison. The transmittance and PL of all samples were measured. All samples containing Ag nanopatterns exhibited improved PL compared with reference samples with no Ag. For all pattern sizes, the samples with the embedded Ag nanoarrays exhibited the highest PL; the relative PL enhancements compared with samples with Ag dot-shaped nanoarrays were 32.2%, 36.1%, and 62.7% for pattern sizes of 150, 200, and 265 nm, respectively. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JNP.8.083089]
منابع مشابه
Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy.
This work demonstrates the fabrication of metallic nanoprism (triangular nanostructure) arrays using a low-cost and high-throughput process. In the method, the triangular structure is defined by the shadow of a pyramid during angle evaporation of a metal etching mask. The pyramids were created by nanoimprint lithography in polymethylmethacrylate (PMMA) using a mould having an inverse-pyramid-sh...
متن کاملNanosilver Colloids-Filled Photonic Crystal Arrays for Photoluminescence Enhancement
For the improved surface plasmon-coupled photoluminescence emission, a more accessible fabrication method of a controlled nanosilver pattern array was developed by effectively filling the predefined hole array with nanosilver colloid in a UV-curable resin via direct nanoimprinting. When applied to a glass substrate for light emittance with an oxide spacer layer on top of the nanosilver pattern,...
متن کاملC1nr10265f 2903..2908
Surface enhanced Raman scattering (SERS) is an analytical sensing method that provides label-free detection, molecularly specific information, and extremely high sensitivity. The Raman enhancement that makes this method attractive is mainly attributed to the local amplification of the incident electromagnetic field that occurs when a surface plasmon mode is excited at a metallic nanostructure. ...
متن کاملContinuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate
Surface-enhanced Raman spectroscopy (SERS) has been a powerful tool for applications including single molecule detection, analytical chemistry, electrochemistry, medical diagnostics and bio-sensing. Especially, flexible SERS substrates are highly desirable for daily-life applications, such as real-time and in situ Raman detection of chemical and biological targets, which can be used onto irregu...
متن کاملLarge area flexible SERS active substrates using engineered nanostructures.
Surface enhanced Raman scattering (SERS) is an analytical sensing method that provides label-free detection, molecularly specific information, and extremely high sensitivity. The Raman enhancement that makes this method attractive is mainly attributed to the local amplification of the incident electromagnetic field that occurs when a surface plasmon mode is excited at a metallic nanostructure. ...
متن کامل